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ABSTRACT

Multiple sequence alignments have become one of the most commounlyras®irces in genomics
research. Most algorithms for multiple alignment of whole genorlgseither on a reference genome,
against which all of the other sequences are laid out, or requoree-#0-one mapping between the
nucleotides of the genomes, preventing the alignment of recently daglicegions. Both approaches
have drawbacks for whole genome comparisons. In this paper we paesemt| symmetric alignment
algorithm. The resulting alignments not only represent all ofyjm®mes equally well, but also include
all relevant duplications that occurred since the divergence from the lastocoamrestor.

Our algorithm, implemented as a part of the VISTA Genome Pip@lid), was used to align seven
vertebrate and six drosophila genomes. The resulting whole genamenatits demonstrate a higher
sensitivity and specificity than the pairwise alignmentwipresly available through the VGP, and have
higher exon alignment accuracy than comparable public whole geabgmenents. Of the multiple
alignment methods tested, ours performed the best at aligning fyjene multi-gene families — perhaps
the most challenging test for whole-genome alignments. Our whalmyge multiple alignments are
available through the VISTA Browser at http://genome.lIbl.gov/vista/indemlsht




INTRODUCTION

Genome conservation is an essential guide for biologists and bioinftenstattempting to locate
functional elements and formulate biological hypotheses for testitige laboratory. By searching for
highly conserved sequences across multiple species scientist&dbatified critical functional elements
(Bejerano et al. 2004; Pennacchio et al. 2006; Prabhakar et al. 2006). Sequencetimnsecoanmonly
used as input to programs that predict genes (Gross and Brent 2006)8vit al. 2005) (Dewey et al.
2004), find transcription factor binding sites (Lenhard et al. 2003)s@d et al. 2004), and other
regulatory elements (Abbasi et al. 2007) (de la Calle-Mustiehes. 2005). The conservation signal
used by all of these applications is based on alignments between the input gestpraitces.

The first tools developed for alignment of longer genomic regions, asidBLASS (Batzoglou et al.
2000), AVID (Bray et al. 2003), and BLASTZ (Schwartz et al. 2003) coatdalign more than two DNA
sequences. At the same time multiple alignment tools, suchASTAL-W (Thompson et al. 1994) and
DIALIGN (Morgenstern 2000, Morgenstern et al. 1998), could not handle tharea few kilobases of
sequence. To address the need for multiple (three or more sequédigo@sgrat of long genomic regions
several tools have been developed, including LAGAN (Brudno et al. 2003a)]DM@ray and Pachter
2004), and TBA (Blanchette et al. 2004). Most recently severahadsthave been developed for
probabilistic alignment of DNA sequences (Lunter, et al 2008, Ratah2008). These tools differ from
previous approaches in that they can learn correct alignmenhetars directly from the data, and use a
probability-based score, instead of the heuristic Needleman-\Wyes@lties used by previous methods.
All of these tools use a progressive alignment technique, whicsedlon the phylogenetic relationship
between the sequences being aligned. First, the closest seqaenaégned to each other, and then the
resulting alignment is aligned to the more distant sequenceswiioj a phylogenetic tree. The
progressive heuristic, because it closely mirrors the evolutioheobtganisms, has been found to be
highly effective for alignment of both DNA (Blanchette et2004; Bray and Pachter 2004; Brudno et al.
2003a; Paten et al 2008) and protein (Do et al. 2005; Thompson et al. 1§9dncees. In fact, it was
shown that multiple DNA sequence alignment methods (as opposed tospaiane better at capturing
functional signals from phylogenetically diverse vertebratestdube use of intermediate sequences in
multiple alignments (Margulies et al. 2006).

The problem of aligning whole genomes is more difficult than thalighing individual, shorter, DNA
segments because it is necessary to find the corresponding (ootg)lddocks inthe genomes prior to
the actual alignment. Perhaps the most straightforward approaaigning two whole genomes is to
perform local alignment between all of the chromosomes of bdtreajenomes. However classical local
alignment methods do not consider whether a particular local aligrfaiks into a larger syntenic block
(region without rearrangements). This leads to difficultiet witmasked repeats, and with paralogous
copies of various genomic features: for example when both sequenees paralogous genes, the
classic local alignment methods would yiefdalignments between all pairs of these. Despite some of the
disadvantages, local alignments were used for comparison of the human andjemaunses (Schwartz et
al. 2003) (Ma et al. 2002), and for the human/mouse/rat three waynaiigs, (Blanchette et al. 2004),
because of their high sensitivity when aligning large mammalian genwittecomplex rearrangements.

An alternate approach proposed for human/mouse comparison was the tandegtobal approach

(Couronne et al. 2003). In this technique, one genome is split up int@erlsized pieces (the authors
used 250k), and the potential orthologs for each contig are found in the ggmwide using a rapid,
though less sensitive, alignment program, e.g. BLAT (Kent 2002). The sequas@xtended around the



BLAT anchors, and aligned using a global alignment program. This guozevas later expanded to
three way alignment of the human, mouse and rat genomes (Brudn®2@04). Although the tandem
approach produces a map that is accurate within large syntenices Hi@gions of genomes without
rearrangements), it has two main weaknesses: small syriluks, resulting from rearrangements
within a larger region, may be missed, and the initial arbidangion of one genome into segments can
split a syntenic region, making it difficult to map the region to its true ortholog.

Because of the shortcomings of these methods there has beemsatcreffort in developing hybrid,
“glocal” alignment methods. These methods attempt to combinedirantages of the local and global
approaches by modeling the rearrangements (shuffling) thet@rge undergoes during evolution. Some
of the most common rearrangement events are inversions (a blodiAofcbanges direction, but not
location in the genome), translocations (a piece of DNA movesn@awalocation in the genome), and
duplications (two copies of a block of DNA appear where thereamaspreviously). The more recent
algorithms for whole genome alignments attempt to incorporate kie¢y levolutionary events as
“operations” into their scoring schemes, including several toolsdén@tie whether to accept or reject a
local alignment based on other alignments near it. These inSludie-LAGAN (Brudno et al. 2003b),
Chains and Nets on the UCSC Browser (Kent et al. 2003), Merdagwefy 2007), A-bruijn Block
Aligner (Raphael et al 2004), and Mauve (Darling et al. 2004).

While most of the pairwise whole genome alignment algorithmsridesicabove have been generalized
to multiple alignment, these approaches rely orefarence genome, against which all of the other
sequences are laid out, or require a one-to-one mapping, wherenaelebtide of one genome is
constrained to align to at most one place in the other genome. Bibtbsef approaches have drawbacks
for whole genome comparisons: the first will not align segmeotserved among some genomes, but
missing in the reference, while the second will fail to aagy element that has undergone a duplication.
Most recently non-referenced genome alignment implementations dygyeared, for example the
ENREDO package (Paten, et al 2008), used by the ENSEMBL genomeebrd?NREDO builds a
genome alignment graph, akin to the A-Bruijn graph alignment of (R&ghaal 2004), and all of the
genomes are aligned simultaneously. This approach has the disadwamageaking into account the
phylogenetic information about the species, making it more difficult to alggardigenomes.

In this work, we present a novel non-referenced multiple alignalgotithm. Our approach is based on
the progressive technique for multiple alignment, and has seadrahtages over previous algorithms: 1)
it does not utilize a reference genome, but creates a symmetric atigaqually valid for all genomes; 2)
it allows for arbitrary duplications in all genomes, and does mpiine the nucleotides to have a one-to-
one mapping; and 3) it is able to align short syntenic blocks basdteioradljacency to high similarity
areas, even in the presence of rearrangements. Our resulssdmte that our alignments have high
exon alignment accuracy, and outperform other approaches, espeaxialigfiment of genes from multi-
gene families and distant species.

RESULTS

ALGORITHMS

Our algorithm is based on progressive alignment, with genomes dlignéhe phylogenetic tree. After
aligning two genomes, our algorithm joins together syntenic bloes®d on the outgroups (those
sequences that will be aligned at a later stage: for exaifnple have aligned mouse with rat, then
human, dog, and chicken are all outgroups). By picking an order of tten&yhlocks which is closest to
the outgroups we facilitate alignment of the more distant genomes.



In the sections below we start by describing SuperMap — a stmorextension of the pairwise Shuffle-
LAGAN algorithm capable of alignment of whole genomes. Secondly we descnitreel multiple whole
genome alignment algorithm that uses SuperMap for pairwise geslggnenent, and uses an algorithm
based on the Maximum Weight Perfect Matching Problem to ordediiveed areas of the two genomes
to simplify the mapping in the next stages of the progressive algorithm.

SuperMap: Pairwise Alignment of Genomes

The SuperMap algorithm is based on the original Shuffle-LAGANLASAN) chaining algorithm
(Brudno et al. 2003b). The S-LAGAN alignment algorithm runs in thtages (Figure 1). During the
first, all local alignments between the two input sequencesaatel. In the second stage, we select a
subset of these alignments to represent a rearrangement wagréte two sequences. Finally regions
of conserved synteny (those without rearrangements) aregreedlusing the LAGAN global alignment
algorithm.

The S-LAGAN chaining program takes as input a set of loagthmlents between the two sequences and
returns the maximal scoring subset of these under certaigrgjapa. In order to allow S-LAGAN to
catch rearrangements, the collinearity assumption of globaiithigys was relaxed to allow the map to be
non-decreasing (monotonic) in only one sequence (the “base”), withoirtgpatty restrictions on the
second sequence. This is called a 1-monotonic conservation map. Perhamsinhgeakness of the
Shuffle-LAGAN chaining algorithm is its asymmetry, sintelépends on one genome being labeled as
the “base”, and duplications only in the base genome are aligned.

To address this issue we have built the SuperMap algorithm tasgbe symmetry problem by adding
a post-processing step. We run S-LAGAN twice, using each seqasnitee base (see Figure 2). This
gives us three pieces of data: the original local alignmerttghwvere common to the two runs of S-
LAGAN, and two chains of these alignments, each corresponding t8-ttAGAN 1-monotonic maps.
We then classify all local alignments as belonging to both cham,consequently orthologous (best
bidirectional hits) or being in only one chain, and hence belongiagitglication. Local alignments that
do not fall into either chain are considered to be false posiavelsare removed from consideration. We
transform the two S-LAGAN chains into a graph as follows: Exaignment becomes a node. If the
alignment A2 follows Al on an S-LAGAN chain, we add an edge givorg Al to A2. Every node that
has incoming edges from two different nodes is the beginningsght@nic block, and every node with
two outgoing edges to two different nodes is the end of such a region. |dergifyiegions can easily be
accomplished in linear time once the S-LAGAN chains are built.

This SuperMap algorithm has several advantages over regul®&G3HL 1. It is able to locate
duplications in both sequences, overcoming a major weakness of thealoalgorithm; 2. In case of
translocations, two of the pieces are no longer arbitrarily joiogether; 3. This approach locates both
regions of one-to-one similarity (those that were in both 1-monotonic chainskelydduplications.

Multiple Alignment

We have generalized the SuperMap algorithm to alignment of nhare tivo genomes through a

progressive alignment framework. Our algorithm reorders, atietaimal node of the phylogenetic tree,

the alignments between its children genomes in order to simplifglithement of these alignments to the
next outgroup. We refer to this ordering as the “ancestral” ingleais it most closely resembles the order
of the same regions in the genomes of other, close genomes.



For every node of the tree, our algorithm starts by generats®g of local alignments between the two
children genomes. SuperMap chaining is used to identify all regmaents and define consistent
subsegments among the local alignments. The resulting regioradigiwmed with LAGAN. Given the
output of the SuperMap algorithm, for every syntenic block, we considéwthehildren genomes as the
two possible next blocks in the best ordering of the alignments. dideden the better ordering we use
the most proximal outgroups to compute the support for each edge, aseldéwta subset of these edges
such that each syntenic region is preceded by at most one region, and followed kyoaiemegion.

In order to build this ancestral ordering, we first use Fitalgerithm to build a consensus representation
of all alignments. Fitch’s algorithm recreates the chardhtdrshould be used in the ancestral genome so
as to minimize the number of mutations that take place in ignenant. We align these ancestral contigs
to the most proximal outgroups (since we assume that the toaeary, we follow one edge up the tree,
and locate those genomes that are present in the other child abte). For every breakpoint between
syntenic blocks, we determine which of the two children is mosylikebe the ancestral order by letting
the outgroups “vote” on the proper ordering. Each outgroup is assignaedhd baesed on its proximity to
the ancestral node. The outgroup’s vote is distributed between thehtldoen, with the child whose
order of conserved elements is closest to the outgroup receiving the biggenfra

This problem can be formally written as thlaximum Weight Path Cover problem, in a similar manner
to the reduction of the breakpoint median problem to the Traveling SaileBmoblem (Sankoff and
Blanchette 1998). Each path corresponds to an ordered segment nEesgad genome. However this
problem is known to be computationally intractable (NP-hard). Conseguesmtisolve theMaximum
Weight Perfect Matching (MWPM) problem instead. We reduce the alignment problem taghgn the
same way as in the SuperMap algorithm (see Figure 3), thdveghetw graph is built based on the
syntenic regions that are produced by SuperMap. We define the wieightsch edge in the graph based
on how much it is supported by outlying genomic sequences. This predsdexplained in detail in the
Methods section. The MWPM solution is a set of paths and cycleseivave the smallest weight edge
in each such cycle to break the circular path, and create ab{gassn-optimal) path cover. For each
path we build an ancestral “contig” by filling the gaps betweenmailents with the genomic sequence
that was closer to the ancestor. We use these ancestral contigs in helsenfléhe tree.

It is important to note that our “ancestral genome order” and “aatesntigs” should not be thought of
as representing the genome of the ancestor of the organismsatigned — in fact it is an ordering of the
pieces that will make it easiest to align them to the aetgroup. This idea also appears in the context of
progressive alignments of protein sequences, where alignmentmpsgse the UPGMA guide tree to
align the sequences, rather than the neighbor joining tree, evehtth@uneighbor joining tree is a better
approximation of the true phylogeny (Nelesen et al. 2008) (Edgar 2004).

EVALUATION

Our multiple genome alignment algorithm has been implementedtasfphe VISTA Genome Pipeline
(VGP), and has been used to align seven vertebrate genomes (hhesars, dog, horse, mouse, rat,
chicken), sixDrosophila genomes . melanogaster, D. ananassae, D. erecta, D. pseudoobscura, D.
simulans, and D. yakuba). To evaluate the quality of our alignments we considered twoiamnetr
commonly used in alignment literature: the overall coverage of¢in@me and of important genomic
features by high scoring alignments (Waterston et al 2002, @thwt al 2003), and the accuracy of
alignment of annotated exons (Brudno et al 2003a, Bray and Pachter 2a06#)er metric commonly
used to evaluate alignments is the comparison of sequences thanhtawgone simulated evolution, and
for which the true alignment is known. While this approach is usefldomparison of the alignments of



regions without rearrangements (Blanchette et al 2004), whemnthallowed evolutionary events are
substitutions and insertions/deletion, it is not currently pradiicalhole genome alignment, as currently
there are no tools for realistic simulation of evolution of a complete genome.

Genome Coverage

The first analysis we conducted was the comparison of the thredswaan-mouse-rat alignment
obtained using our progressive whole genome algorithm with the tandenglzal/heuristic previously
used by the VISTA Genome Pipeline (Brudno et al 2004, Couronne et al 2008)evaluated the
alignments based on the fraction of the gene coding regions and ohdtie genome that are aligned
above a certain threshold (coverage), and based on the total dize alignments (specificity). The
results (summarized in Table 1) show higher sensitivity and acgwf the new method in aligning
coding regions, while the overall length of the alignment was loiwdicating higher specificity. The
increase in exon coverage is due to the fact that the new metheties able to align genes in regions
with rearrangements. To illustrate this we demonstrate covstatigtics for chromosome 20, which has
almost no rearrangements between the species, and the results of the two arettiedssimilar.

Exon Alignment Accuracy

Secondly, we compared the overall alignment accuracy of our psogrdschnique with the alignments
produced by the Penn State/UCSC Alignment Pipeline and displgyteg JCSC Genome Browser for
two clades: vertebrates and Drosophilas. We also compared oubrattealignments to the
ENREDO/PECAN alignments displayed at the ENSEMBL GenonwevBer. To measure the alignment
guality we use the method that evaluates exon alignment (Brudao2£i03a, Bray & Pachter 2004).
For both clades we have designated a reference organism (humanrmaalibgaster respectively). We
decompose the multiple alignments into pairwise alignments betiveaeference and all other species,
and rank each exon of the non-reference genomes based on what pefitdageleotides are aligned
within an exon in the reference genome. The results are sunechan Figure 4. For the mammalian
genomes (4A&C) our alignment method consistently achieved examadigf accuracies of above 90%,
with the highest accuracy being for dog (94%). The differdratereen our alignments and those of the
UCSC browser were small — we aligned anywhere between 11&%u@) and 4.8% (horse) more exons
completely within a human exon than the UCSC pipeline, with a sinlerease in the number of exons
not aligned at all (first column). However the differenceswgighen we considered more distant
genomes: we were able to align 85% of the annotated chicken exonthewvdull length to human
exons, while the UCSC pipeline aligned 15% less. We found the difiesen exon alignment accuracy
between the ENSEMBL and our alignments even greater (F4D)e As became evident from our
analysis of multi-gene families (see below), these diffeenwvere mainly due to the inability of the
ENSEMBL pipeline to properly deal with some duplication events (see below).

While the overall level of alignment accuracy in the Drosoph#iaoghes was much lower (Figure 4E,
from 83 to 60% of the exons aligned), the overall tendency of our alignpieeline to perform better
than the UCSC browser for alignment of more distant sequences is still etidgeme (4F).

Pairwise ver sus M ultiple Alignment

We wanted to test whether the ancestral multiple alignmeitttod improves results compared with the
pairwise one (using the SuperMap anchoring algorithm). Although tloeithlg is generally the same,
the use of intermediate sequences has been previously showrprmventhe alignment of distant
orthologs. For example, Margulies et al (Margulies et al. 20R6yved that multiple DNA sequence
alignment methods (as opposed to pair-wise) are substantially betignatga({or ‘capturing’) functional
signals from phylogenetically diverse vertebrates. Totkesthypothesis we compared the exon accuracy



of pairwise alignments between the genomes present in our whole-ges@nment set with the
multiple alignment results. The results, summarized in Figure cbBfirm that using intermediate
sequences improves alignment quality, especially when aligning more disfaehses, such as chicken.

Alignment of Inparanoid Gene Families

In order to test not only the sensitivity, but also the spegifaitour method, we have compared the
multiple alignments to the Inparanoid gene clusters for human and mensmes (O'Brien et al 2005).
Inparanoid organizes human and mouse genes into groups, each containinghone genes from each
genome. All of the human and mouse genes within a group (clustesjthodbogues of each other, and
putatatively evolve from a single gene in the genome of the human/raaasstor. The Inparanoid
clusters are based on pairwise protein BLAST alignments betaleef the genes; since this method is
significantly different from whole genome multiple alignmentspridvides an independent method for
evaluating the accuracy of the alignments. Good genomic multiglaneents should align truly
orthologous, rather than paralogous genes. We considered all ofotie® rexons, and evaluated their
alignments to human exons, labelling every alignment orthologous (aligitledh & gene that is an
Inparanoid ortholog) or paralogous (to an exon that is not an ortholoigpefRes, we considered them
ortholgous/paralogous if any exon in them was ortholgous/pralogouss iAgstrated in Table 2, the
alignments generated by our method was the most sensitive (higiotistin of orthologous genes/exons
aligned), while the UCSC-based alignments and those from ENSEMB& more specific (fewer non-
orthologous genes/exons).

Secondly, we evaluated the three methods on how well they can atiga tat have undergone recent
(since the divergence of human and mouse) duplications. To test tbhensidered only those genes and
exons that were in clusters with multiple human and multiple mgerises (many-many) and those with
multiple human genes and a single mouse gene (one-many). For bduesefroups, all of the alignment
methods were able to align (even to a single ortholog) signifiy fewer genes than in the genome as a
whole. This trend was especially pronounced for ENSEMBL, that alignéy 20% of the many-many
genes, and 44% of the one-many genes to even a single orthologigdonealts were the most sensitive
for these clusters, aligning 70% and 79% of the genes, respectively. Furéhesoraalignments were the
only ones that were able to align more then 3% of either thesgaer the exons tall of the orthologs:
only 46 of the 2500 exons in multi-gene clusters were aligned to aleobrthologs in ENSEMBL
alignments (36 in the UCSC alignments), while 655 were in our alignments.

DISCUSSION

In this paper we describe the designed and implementation of a giegraignment algorithm for
whole genomes. Our method differs from other multiple alignment #gigasifor whole genomes in that
it does not assume a reference genome against which all of tmegetitanes are laid out. Instead we
combine the “glocal” alignment framework that is widely used imol genome alignment with a
progressive approach, where at every progressive step weptattemrder the obtained alignments in
such a way as to ease the comparison to the next outgroup. Thus, ouclapgkea advantage of highly
conserved segments to align nearby less conserved ones, even asdbewbere there has been a
rearrangement at the locus in one of the species. We have iempézirour method as part of the VISTA
Genome Pipeline, and applied it to the alignment of 7 vertebrate dgdyérniomes. We compared the
resulting alignments to those available through the UCSC Genoaves&r and ENSEMBL, and show
that our approach is more accurate at aligning exons betwespéhbees, especially as the evolutionary
distance between the organisms grows. All multiple alignmemisrgeed by our algorithm are available
for browsing and analysis through the VISTA Browsédntgi://genome.lbl.gov/vista/index.shtml
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At the same time our approach to whole genome alignment haslseeaknesses, which may prove to
be fruitful grounds for future work. Our approach toward the recongtruof “ancestral” sequences for
further alignment in the progressive framework does not attemgictmstruct the true genome of the
ancestor species, but rather to construct the sequence thaes taslign to the outgroup. A method
that will attempt to reconstruct the true ancestor may be rptdé&for a wide range of evolutionary
studies (Ma et al. 2006). Another potential area of improvement isreatment of poorly assembled,
draft genomes. For such genomes, our algorithm currently resortsi¢otiis reference-based alignment
approach, as using a draft genome in our ancestor reconstructiornasalgad to decreased alignment
accuracy. Designing a progressive non-referenced framework litpring both finished and draft
genomes is an important future goal, as many genomes sequenced today adealiftarm.

Perhaps the most evident weakness of ours (and all of the othengexuhole genome alignment
algorithms) is their inability to deal with multi-gene faregdi While our alignment method was the most
sensitive in capturing multi-gene inparanoid gene clusters (O’Btiah2005), aligning 70% of the genes
and 64% of the exons in inparanoid clusters with multiple genes fromHwhans and mice to an
ortholog, only 21% and 15% of these were alignedlt@f the orthologs (see Table 2). This shows that
there is still significant room to improve upon our methods for whole genome alignment

METHODS

The sections below provide a more thorough description of the various camgafeur alignment
pipeline. The Shuffle-LAGAN chaining algorithm and the original tALAGAN alignment algorithms
have been described earlier (Brudno et al. 2003a, 2003b).

Implementation & Availability

The whole genome pipeline algorithm has been implemented in a cdimbio&Perl and C programs,
using a MySQL relational database to store both input genagiceesces and generated alignments. All
major stages of the pipeline - obtaining local hits with BLAT, SMagr chaining, aligning syntenic
regions with LAGAN, and computing ancestral contigs - make use loha cluster. The pipeline
software is publicly available at http://genome.lbl.gov/vista/downloads.shtml

Local Alignments

The local alignments between all sequences can be computed agirglignment algorithm. We
typically use BLAT, as it allows for rapid alignment. We rtimni translated DNA mode, indexing non-
overlapping 5-amino acid words, and requiring one word to trigger an alignment.

Global Alignments

Global alignments are done with PROLAGAN, which is a variatiorthef original Multi-LAGAN
program that allows for the alignment of two alignment (profil@$)e alignment of two profiles is a
basic step in the Multi-LAGAN algorithm, and the PROLAGAN exeble separates this functionality
into a standalone program. The algorithm used is identical to theepsdge step of the original LAGAN
algorithm (Brudno et al 2003a), and is available as part of the LAGAN toolKkingtavith version 2.0.

SuperMap

The SuperMap algorithm is implemented as a standalone Perlaigpijcand is available as part of he
LAGAN Toolkit. After running the S-LAGAN algorithm with both genomas bases, the local hits that
form both of the chains are sorted by their positions in thegeasbme. The two lists are traversed to
identify local alignments that are in both chains, which areedfto as dual-monotonic (DM), and those



which are in only one of the chains (labeled M1 and M2, depending on thg.dhathis first pass we
also group alignments which are labeled DM and M1 into segmentsiséived synteny by unifying any
alignment with the previous one if they are consistent (can bet afpdne same global alignment) and
have the same type (both M1 or both DM). The local alignment$areré-sorted based on the second
genome, and the segments of the type M2 are formed.

This algorithm keeps all of the local alignments on disk, sortedyuke Unix sort command. We use
only a constant amount of memory, thus allowing for processing oéregly large sets of local
alignments efficiently.

Extending the Alignments

One of the major weaknesses of fast, heuristic local alighrakgorithms is that they often fail to
discover weaker areas of similarity, and the borders of syntenic blos&d ba these alignments may falil
to include important conserved regions nearby because they faileddt the local alignment criteria.
Consequently, the Shuffle-LAGAN algorithm expanded the borders of essgrienic block to the
subsequent syntenic block in the base sequence, or up to a constant, whielsesmaller. Expansion in
the second sequence was based on a fixed multiplicative fadtue ekpansion in the first sequence. In
SuperMap, we augment this approach by expanding each alignmentteatiest M1 or DM alignment
in sequence 1, and either M2 or DM alignment in sequence 2. This appiméshthhe expansion of
alignments to a minimum, while allowing for the addition of the bomgions not included in the
original set of local alignments.

Computing Ancestral Contigs
After an alignment between two segments is built, we compute the ancestigs @s follows:

(1) Infer an ancestral sequence for all of the alignments ustog'$-algorithm (Fitch 1971). Gaps
are treated as a fifth character.

(2) Build local alignment between the ancestral sequence and the genoithe nearest outgroup
(the nearest outgroup can have either one or two genomes).

(3) Convert every alignment to an edge that connects the two nodespmrding to its two
endpoints. We will refer to such edges as “alignment edges”. Cotwendpoints if there is no
third alignment that falls between them in the genome. This ¢ypedge is referred to as a
“connection edge”. See Figure 3 (A&B) for an illustration.

(4) Compute the weight for every connection edge by running the S-LAG#Ming algorithm on
all of the local alignments built from every alignment edge, alsd on pairs of alignments
connected by a connection edge. aetndb be two syntenic blocks joined by a connection edge.
The weight for this edge is computed as follows: for both of the outgenpmes X X2 we find
all of the alignments betweeri ZAnd botha andb. We find the highest scoring consistent chain of
local alignments between'Xnda, X' andb and between Xand @ U b). Let the cumulative
scores of these three chains be calledy, C, and U, respectively. Then we set
W'ab = (U-MIN(C,,Cy))/ MAX(C1,C;). Note that iab ranges between 1 and 0, and is the support
for the edgeE, (a,b) from sequence XWe combine the supports to get the weight for the edge
between a and b to be WalyW'ab/n. This is illustrated in Figure 3E.

(5) Remove the alignment edges from the graph and compute the maximgint matching on the
resulting graph. Remove the smallest edge from every cycleff@ency we split the graph into
the connected components and perform the procedure on all connected compEpeately.
The result of the maximum weight matching algorithm is shown in Figure 3C.
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(6) Any edge in the matching joins together two alignments throughteyar genome. Build an
ancestral contig by resolving any overlap between the alignihémty overlap in the genome
through which they were joined, or by inserting any in-betwg@ene in the joining genome if
they do not overlap. This is illustrated in Figure 3D.

Handling L ow Quality Assemblies

When aligning a genome consisting of many short contigs to aduglity assembly, which usually
consists of chromosomes, we modify our algorithm by replacing the eal@=tome ordering stage with
one that orders all of the alignments based on their order inttiee genome. This is done because a low
guality genome assembly is likely to have regions that apgeduglications, but are in reality under-
collapsed copies of the same genomic region. The copies are hasdthplacations, and lead to
inaccuracies in the ancestral reconstruction step. Instead, incasel we create a “faux-ancestor” by
ordering all of the M1 and DM alignments based on their order in the high qualdynge

Evaluation Based on Inparanoid Clusters

We have downloaded the database of human/mouse Inparanoid orthologousisgeng @’Brien et al
2005) fromhttp://inparanoid.sbc.su.snd found the location of the orthologs in our genome assemblies
using the tables at the UCSC Genome Browser. Inparanoid buildsrslo$tortholgous genes based on
their pairwise BLASTP scores. We removed from consideratioovallapping genes, as well as clusters
where any of the genes had missing locations. The remainingrssested of 13,780 genes with 141,244
exons. We counted two exons aligned if they overlapped by a singeotidelin the multiple alignment.
Two exons were considered orthologous if they were located on tves ¢fest were member of a single
Inparanoid cluster. The one-many and many-many clusters twese that had multiple genes from
human and both human and mouse genomes, respectively.
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Figure & Table L egends

Figure 1. Overview of the ShuffleLAGAN algorithm. S-LAGAN first locates all local areas of
similarity between the two sequences using a local alignadgotithm. A subset of these is selected
using the 1-monotonic chaining algorithm (Figure 2). Finally globghalents are built (using LAGAN)
for consistent subsegments of the 1-monotonic chain (areas witlastangements). The S-LAGAN
algorithm is not symmetric, requiring two alignments to identify all dupboat

Figure 2: SuperMap Algorithm. The left side(l) is a dotplot demonstrating the local alignments
between two hypothetical genomes. Local alignments A & B sporad to duplications in Organism 1
and Organism 2, respectively. Local alignment C corresponds to asionjeand local alignments D are
spurious false-positives. The Middle parfel) shows (in blue) the result of running the regular S-
LAGAN 1-monotonic chaining algorithm using Organism 1 as the b@sethe right(l11) we have built
the 1-monotonic maps for Organism 1 (blue) and 2 (red). Whenever tiegs merge, they are shown
as purple. Similarly, local alignments are colored based on whighsctiey belong to: blue (M1), red
(M2) or purple (both,DM). All points where the two chains split or joia bBorders of a region of
conserved synteny.

Figure 3. A schematic representation of the reconstruction of ancestral orderings. (A) shows the
result of running supermap on a set of local alignme(®3. shows the corresponding graph
representation, with alignment edges colored black, and connection edgesl dptathe color of the
genome in which these syntenic blocks are adjacent. The weighbbtle edges is computed as shown
in part(E). (C) is the output of running the maximum matching algorithm: each naasigected to only
one connection edge, as well as the alignment edge. Note that by remevatigriment edges this graph

is decomposed into two connected components, that can be solved sed@pstlgws the translation of
the maximum matching output back to the alignments: the result of the algoritlumamaf alignments,
where the letters of the appropriate genome can be inserteednethe sequences. These chains can then
be used for alignment in higher nodes of the e In this example we are recreating the ancestral order
of the grey node in the phylogeny on the right. The top-right gmadghows the output of the SuperMap
algorithm applied to the blue & purple genomes. The top-left and botghnhquadrants show the local
hits of the two genomes on the red outgroup. The selected regions @it tte lused to compute the
score for the blue edge marked(S$= (U-MIN(C,,Cy))/ MAX(C1,Cy)). All of the other edges will be
scored the same way, and the MWPM problem is solved in the ngsgtaph. In this particular case the
purple genome will have more support for being the ancestral order than the blue genome.

Figure 4: Exon alignment accuracy for vertebrate (A-D) and Drosophila (E&F) genomes. Each
category on the X axis shows the exons for a particular sptbeieare aligned to a reference genome
exon over the given fraction of their length. The Y axis for pA&<E shows the overall fraction of exons
in each category for our alignments, while the other plots showiffieeence of these fractions between
our multiple alignments and those from the UCSC Genome Browser rfoous UCSCC&F), those
from the ENSEMBL browse(D), and our pairwise alignmen{8). Our algorithms aligns more exons
perfectly (100% category) and fewer exons are not alignaetl @—10 category) for all species. In the
comparison between our multiple and our pairwise alignments, whilendeaque alignments are
identical, and the dog alignments are nearly identical (the Spexies are close) the human/mouse
alignment is slightly improved, and nearly 10% of chicken exons algeed in the multiple but not
pairwise alignment. The 23-way ENSEMBL alignments that wel us@ had a different version of the
Horse genome, preventing a direct comparison, and we did not genpeaateviae human/rat alignment
(rat would be very similar to mouse), hence the missing columns inBpbotslD.
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Table 1: A comparison of the alignment quality for human Chromosome 20 and whal@arHGenome

to the mouse genome between the tandem local/global heuristic prewisesl in the VISTA Genome
Pipeline (Couronne et al. 2003) (Brudno et al. 2004) and the new Anhc&lggranent technique. The

numbers are the coverage (Schwartz et al. 2003) of the whole gefotap é&nd the annotated coding
exons of RefSeq genes (Exon). Size is the total size of suéting alignments, and Time is the wall
clock time for the alignment (20 dual node, 40 CPU cluster). Timie &xcludes the running time for
running pairwise local alignment (BLAT), which is approximately 3 days peopgenomes.

Table 2: A comparison of the alignments at the UCSC Genome BrowselzEBE and our alignments
(VISTA) based on Inparanoid gene clusters. We considered two akgned if they overlapped even by
a single nucleotide (see Methods). The results show that whitbeéhéISTA Browser alignments have
slightly higher sensitivity (1.8% on genes and 0.7% on exons)sdt lahs a slightly higher rate of
alignment to paralogs (3.2% on genes, 0.8% on exons). The bulk of thisievés genes that we aligned
to both the true orthologs and to paralogs, with genes/exons aligned @alsatogs were less the 0.5%
of the total. Simultaneously our methods showed significantly highesits/ity at aligning genes in
multi-gene clusters: ~10% higher for exons aligned to arlag, and 20-30% higher for genes aligned
to all orthologs.
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Tablel

Chromnsnme 20 Whanle Gennme
Tandem Ancestral Tandem Ancestral
Total 22 K o 22 Q9 on 28 7 on 28 4 on
Fxon 9N A on 89 R0k 78 K on {2 K on
Size 127Gh | 11 0Gh
Time 15 10
Table?2
VISTA UCSC/Multiz ENSEMBL/ENREDO
Genes Exons Genes Exons Genes Exons
'?o';glr;%éo gﬁgg’ elx4°1”2 4 | 13444 | 134446 13207 133498 11592 113971
exons) 9 ’ 97.6% 95.2% 95.8% 94.5% 84.1% 80.7%
Of these, aligned to 12978 133264 13170 133363 11567 113897
orthologs only 94.2% 94.4% 95.6% 94.4% 83.9% 80.6%
Of these, aligned to 417 943 19 7 11 2
orthologs and paralogs 3.0% 0.7% 0.1% 0% 0.1% 0%
Of these, aligned to 49 239 18 128 14 72
paralogs only 0.4% 0.2% 0.1% 0.1% 0.1% 0.1%
fﬂ';%”‘fr‘:];ﬁ ag?’u‘;[terr‘g'(%% 128 549 112 475 38 162
y-many 70.3% | 63.7% 61.5% 55.1% 20.9% 18.8%
182 genes, 862 exons)
Of these, aligned to all 39 126 4 2 1 1
orthologs 21.4% 14.6% 2.2% 0.2% 0.5% 0.1%
Aligned to ‘z‘lnuysgrtg‘z(')‘;g' 242 2131 226 1909 133 1153
y 79.3% 85.2% 74.1% 76.4% 43.6% 46.1%
305 genes, 2500 exons)
Of these, aligned to all 97 655 7 36 7 46
orthologs 31.8% 26.2% 2.3% 1.4% 2.3% 1.8%
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